Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth.

نویسندگان

  • Toma Susi
  • Giorgio Lanzani
  • Albert G Nasibulin
  • Paola Ayala
  • Tao Jiang
  • Thomas Bligaard
  • Kari Laasonen
  • Esko I Kauppinen
چکیده

We have studied the mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth illustrated for the case of a floating catalyst chemical vapor deposition system, which uses carbon monoxide (CO) and ammonia (NH(3)) as precursors and iron as a catalyst. We performed first-principles electronic-structure calculations, fully incorporating the effects of spin polarization and magnetic moments, to investigate the bonding and chemistry of CO, NH(3), and their fragments on a model Fe(55) icosahedral cluster. A possible dissociation path for NH(3) to atomic nitrogen and hydrogen was identified, with a reaction barrier consistent with an experimentally determined value we measured by tandem infrared and mass spectrometry. Both C-C and C-N bond formation reactions were found to be barrierless and exothermic, while a parasitic reaction of HCN formation had a barrier of over 1 eV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

Theoretical Calculations of the Effect of Finite Length on the Structural Properties of Pristine and Nitrogen-doped Carbon Nanotubes

The effect of impurities on quantum chemical parameters of single-walled nanotubes (SWNTs) was studied using density functional theory (DFT). The density of states (DOS), Fermi energy and thermodynamic energies of (5,5) carbon nanotubes were calculated in the presence of nitrogen impurity. It was found that this nanotube remains metallic after being doped with one nitrogen atom. The partial den...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

DFT Study of N-hydroxyurea Adsorption Behavior onto Pristine and Iron-doped Single-walled Carbon Nanotube

The interactions between N-hydroxyurea (NHU) as anticancer drug and SWCNTs (pure and Fe-doped) were investigated with density functional theory. In this study, large long-range corrected CAM-B3LYP and B3LYP were employed to investigate the stability of the different NHU-CNT and NHU/Fe-CNT complexes in the gas phase and solution (water). The presence of an iron atom would create suitable space o...

متن کامل

Supergrowth of nitrogen-doped single-walled carbon nanotube arrays: active species, dopant characterization, and doped/undoped heterojunctions.

We demonstrate the water-assisted supergrowth of vertically aligned single-walled carbon-nitrogen nanotubes (SWNNTs) using a simple liquid/gas-phase precursor system. In situ characterization of gas-phase nitrogen-containing precursors and their correlation to growth identifies HCN as the most active precursor for SWNNT growth, analogous to C(2)H(2) for single-walled carbon nanotubes (SWNTs). U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 23  شماره 

صفحات  -

تاریخ انتشار 2011